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Simple dynamical models for hierarchical bunching
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Simple one-dimensional models for hierarchical bunching are proposed. A uniform state with equal spacing
is linearly unstable and bunching clusters are created. The bunching clusters are further merged into even larger
clusters. The coarsening process towards the larger clusters obeys a power law for the long-range forces. The
exponent of the power law depends on the long-range forces. A continuum version of the lattice model with
linear repulsive force is studied more in detail. The model has a form of a kind of spinodal decomposition. The
coarsening dynamics is similar to a one-dimensional version of the Ostwald ripening.

DOI: 10.1103/PhysReVvE.68.056103 PACS nun)er05.70.Fh, 89.75.Kd, 64.60i

[. INTRODUCTION f(1)=—0U/dl for the dynamics and the potential decreases
in time. We can assume various types of interactions between
Bunching phenomena are observed in various researdhe neighboring elements. Similar to the interatomic force,
fields. Microwave oscillation is induced by the bunching of we assume a short-range repulsive force expressed by a
the electron density and the electric field in the Gunn effecpower law such a$(l)=a/l“ (a>0) whenl is sufficiently
for GaAs|[1]. Traffic congestion is a bunching phenomenonsmall. We use in this paper a repulsive force with exponent
of car flow[2,3]. Step bunching was observed on the vicinala=3. The repulsive interaction with exponeat=3 origi-
surfaces of SiL11) [4,5]. Step bunching which exhibits the nates from the elastic energy in the problem of the step dy-
power-law growth was found in several experimdits The  namics on vicinal surfaces. The short-range repulsive forces
hierarchical step bunching on the vicinal surfaces was studsrevent the spacing between the nearest neighbors from be-
ied theoretically based on several model equat[@ng]. ing zero. We assume further several types of long-range in-
The bunching phenomena are explicitly shown by nu-teractions. For interatomic forces, the interaction becomes
merical simulation of dynamical equations for the positionsattractive in the long range in most cases. We can assume a
of bunching objects. Bandet al. proposed an equation of model in which the long-range attractive force is expressed
motion for the position of each vehicle for the problem of asf=f,(1)=—b/I? (b>0). The attractive force expresses a
traffic congestiorf9]. For the problem of the step bunching, force like the Coulomb force between ions with opposite
explicit dynamical equations of motion for the position of charges. We will study three other repulsive forces. The sim-
each step were derived based on the diffusion equation arglest one is a linear forcé=f,(l1)=bl. We will study this
the boundary conditions for adatoms by several autfis ~ model most in detail, since the model equation is the sim-
however, they have rather complicated forms to understandlest and the hierarchical bunching appears most clearly.
the bunching phenomena qualitatively. We propose an abFwo other simple repulsive forces arfg(l)=blogl and
stract but much simpler model equation to understand thé,(l)=btanhl. Since Eq.(1) is invariant for the transform:
essence of bunching phenomena, and study the time evoltifl)— f(l)+c,, wherec, is a constant, the model with the
tion of hierarchical bunching with numerical simulations andfourth repulsive force (1) is equivalent to a model with the

theoretical analyses. force f4(1)—b=—2bexp(1)/[expl)+exp(-I)]. The force
f4(I)—b expresses an attractive force which decays expo-
Il. SIMPLE DYNAMICAL MODELS FOR HIERARCHICAL nentially for largel. Such exponentially damping force is
BUNCHING often assumed as an interatomic force. The exponentially

] . . damping force and the Coulomb-type forces may be plau-
We consider a one-dimensional system Mfelements. sjple forces in actual physical systems. The model with the

The model equation is written as linear force may be obtained through some linearization of
realistic systems. The hierarchical bunching by the logarith-
%: (YY) Y=Y ) (1) mic force exhibits the power-law growth with the same ex-
dt el toJimLh ponent as the experiment for the step bunching as shown
below.
wherey; is the position of theith element, satisfying/, A stationary solution to Eq(l) is a uniform state with

<y,<---<yy, andf(l) is the force between the nearest constant spacing;,—Y;=Io for everyi. The linearized
neighbors, which depends only on the distahdeetween equation for the perturbatiofly; from the stationary solution
them. If the differential term on the left-hand side is replaceds expressed as

with the second differential term?y; /dt?, the equation be-

comes a model for lattice vibration. Our model is a lattice dsy

model and represents a dissipative and variational dynamics. goyi ., _ _

There exists a potential functio®;U(y;.;—Y;), where gt 1 (o) (= OYiea +20Yi= dYi-n). @
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FIG. 1. Growth parametefr’(l,) for four kinds of functionsf
=f,(1)=—0.071%+a/I®, f=fy(1)=1+a/l®, f5(I)=logl+al/l®
andf,(l)=tanhl+a/l® ata=0.01.
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The linear growth ratex, for the Fourier amplitudedyy P N e e A | S S e e e e
=2]<:15yie""J with wave numberk is calculated as\ x x
=(2—2cosk)f'(lp). If f'(ly) is positive, the linear growth . . B _ )
rates are all positive for any wave numbers, and the uni- FIS' 2. I'me e_V°'““°';S Of{yﬁ for (_a) f_fl(ls)__o':M
: . : ; +all3, (b) f=f,(1)=1+a/l3 (c) f=f5(1)=logl+a/l® and(d) f
formly spacing state is unstable. Especially the linear growth:f (I)=tanhl+ 142 ata=0.01
. . ; 4 .01.
rate is maximum ak= 77, which corresponds to the alternat-
ing modedy;~(—1)'. Figure 1 displays the functiof (1)  f=f;(1)=0.0113-0.312, and Fig. 2Zb) is a time evolution
for the four repulsive force$;(1)=0.011°—0.0712, f,(I) for f=1,(1)=0.0113+1. The merging of bunched clusters
=0.0113+1, f3(1)=0.011%+logl, and f,(1)=0.01/3 occurs hierarchically and only one large cluster survives after
+tanhl. The uniform states with sufficiently smadl) are  t~51. We have performed similar simulations starting from
stable for all models, owing to the short-range repulsive200 different initial conditions where the random numbers in
force. Forf=1,(l),f,(1) and f=f3(l), the uniform states y;=0.74+r are different, and calculated the final coales-
are always unstable for lardg satisfyingly>0.214 for f cence time, when only one large cluster is obtained. The
=f1(1), 1,>0.416 forf="1,(l) andly>0.311 forf=f5(l), average value of the final coalescence time was 60.5 and the
because of the long-range repulsive force. Foerf,(I) variance was 12. The final coalescence time and the time
=tanhl+a/l3, f'(l,) takes positive values in an intermediate evolution of the clustering depends on the small difference of
range ofl 5, but it becomes sulfficiently small but negative for the initial positions, since the initial state is linearly unstable,
largel,. It is because the derivative of tdntlecays to zero but only one large cluster is obtained in similar times. For
exponentially, but that of/I® decays in a power law. The f=f3(1)=0.0113+logl, similar hierarchical bunchings oc-
instability occurs only in an intermediate rangelgf This  cur, but the time evolution is slower than the casefof
type of instability occurs in model equations studied in Refs.=f,(l). We have performed a longer simulation for the same
[9] and[10]. initial condition and found that the single large cluster was
We have performed numerical simulations to study theobtained att~1270. It takes much longer time to get the
time evolution of the unstable states using the Runge-Kuttaingle cluster forf="f5(1) than f=f,(l). For f=1f,(I)
method with time step 0.00005. The initial spacinglis =0.0113+tanhl, the time evolution of cluster bunching be-
=0.7. Figure 1 is a time evolution of E@l). The periodic comes very slow, bunched clusters are located with nearly
boundary conditionyy1=y;+L andyy,=yy—L are used equal spacing at=100. The hierarchical bunching is con-
for numerical simulations. The total number of elements issidered to be due to long-range repulsive force.
N=100 and the system sizZze=NlI, is equal to 70. The We have calculated the time evolution of the average
initial position isy;=0.7i +r, wherer is a random number value{l,(t)) of the distances between the bunched clusters
between 0 and 0.0001. Figure 2 displays time evolutions oin larger-size simulations. The spacirlgsx; .1 — X; between
{yi} for four kinds of forces. Since the uniform state is un- neighboring elements inside the bunched clusters are suffi-
stable, the bunching occurs for all four kinds of forces. ciently smaller than the spacings x;, ;—X;, where theth
Since the linear growth rate is maximum for the alternat-and i +1th elements belong to different clusters. We have
ing mode, pairing of neighboring elements tend to occur firstjudged a spacing between neighboring elements as the dis-
It is the minimum bunching cluster. The uniform configura- tance between the bunched clusters, when the spacing is
tion constructed by the pair clusters is also unstable and thiarger than a critical value such as the initial spacing 0.7.
clustering proceeds further. Many merging processes of th&hen,(l,) was evaluated as the average value of the spacing
bunched clusters are seen in Fig. 2. Qualitatively similar typavhich is larger than the critical value. The average value
time evolutions are observed for different initial conditions, {I,,(t)) hardly depends on the critical value. In this simula-
although the detailed bunching processes are different faion, the total numbeN is 3000, and the ensemble average
different initial conditions. Figure (2) is a time evolution for  was taken for 20 different initial conditions, where the ran-
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4 @ > (o) range forcef(1)~1*. We have not found such a power law
8004 for f=f,(I)=tanhl+a/l3, since the repulsive force saturates
604 exponentially. The exponent of the power-law growth is
600- evaluated with a simple scaling method as follows. If the
4004 401 hierarchical bunching evolves uniformly and bunched clus-
20 ters of numben(t) appear at timé, the distance between the
2001 neighboring bunched clusters is estimated g8 =L/n(t),
o 0 . . . . and the numbeN, of elements in each cluster is estimated
0 0100150200 250300350 400 O 20 40, 60 €0 as N,=N/n(t). If the summation of Eq(1) is taken with
+? (9 <92 () respect to all the elementnside of each cluster, an equation
500 5 for the averaged positiol;=Z2;y; /N, of the jth bunched
400 4 cluster is approximately obtained as
300- 34
200 2 mez—f(YHl—YJ-)Jrf(YJ-,l—YJ-). 3
1004 14
0 2?0 P M A e e If the long-range force is approximated &3)~1, the av-
t erage distance between the neighboring clustgrsyY;, ;

) . ) 4 —Y; obeys the equation
FIG. 3. (a) Time evolutions of the average sizh,(t))* of the

distances between the bunched clusters ferf,(I)=—0.3/2

+0.0113. (b) Time evolutions of the average sizg,(t)) of the

distances between the bunched clustersfferf,(1)=1+0.01/°.

(c) Time evolution of (I(t)))? for f="f5(I)=logl+0.011%. (d)

Time evolution of(l,(t))) for f=1f,(1)=tanhl+0.011°. The time  Therefore, the time evolution df(t) is evaluated a$,(t)

axis is plotted in a logarithmic scale. =tY2~9)_ The exponent for=1 [f=f,(I)] is 1, the expo-
nent for «=0 [including logarithmic lawf=1f;(l)] is 1/2,

dom numbergr} in the initial conditions are different. Figure and the exponent fax=—2 [f=1(l)] is 1/4. These results

3(a) displays a time evolution ofl,(t))* for f=f,(1). A  are consistent with the direct numerical simulations.

linear growth for relatively larget implies that (I,(t))

~t"% Figure 3b) displays a time evolution ofl(t)) for | CONTINUUM EQUATION FOR HIERARCHICAL

f=1,(l1). A linear growth is seen for relatively large The BUNCHING

linear growth law implies that the hierarchical bunching pro-

ceeds fast as seen in Fig(b2 When the average spacing The spacing of neighboring elements inside of the

increases up to the order of system sizethe single large bunched cluster is very small but the interval between the

cluster is obtained. The linear growth @f,(t)) implies that  neighboring bunched clusters is fairly large as shown in Fig.

the time necessary for the generation of the single large clug2. The spacing between the neighboring elements changes

ter is proportional td_. We have also calculated a time evo- discontinuously at the edge sites of the bunched clusters. In

lution 0f<[AIb(t)]2>1/2 , whereAly(t)=I,(t)—(I,(t)). The many bunching models such as car-following models and

root-mean-square of the spacing between the bunched clustep bunching models, the spacing changes more continu-

ters increases also in proportion ttoFigure 3c) displays a  ously. If a next-nearest interaction is introduced as

time evolution of({l(t))? for f=f4(l). The linear growth

dl, dl,
Nbamlbmwlb' (4)

law implies that(l,)~tY2 This type of growth law with dy;

exponent 1/2 was observed in the experiment of the step i Wi yD+iyimyi-g)

bunching of vicinal surfacegs]. From the linear growth of

(Ip(1))?, the time necessary for the generation of the single —D(Yit2—=4Yis1+6yi—4yi_1tYyi2), (5

large cluster is expected to be proportionalto It is con-

sistent that the final coalescence times were 51f fof ,(I) D is a coupling constant, the spacing changes more continu-
and 1270 forf =f4(l) in the simulations shown in Fig. 2. We ously. Figure 4 displays a time evolution of E¢) with f

have checked that the root-mean-square of the spacing be=f,(I)=1+0.01/1° and D= 1. Hierarchical bunching occurs
tween the bunched clusters increases also in a power lagimilarly to the case oD =0. But several elements locate
with exponent 1/2. Figure(d@) displays a time evolution of between the bunched clusters, which makes the profile of
(Ip(t)) for f=f,(1)=tanhl+a/l3. The horizontal axis is plot- spacing more smooth. The equation of motion for the spac-
ted with a logarithmic scale. It implies that the average dising |;=y;;1—Y; obeys

tance between the bunched clusters growd gs-logt, and

the clustering of the bunched clusters is very slow as shown dl;
in Fig. 2(d). a:_f(|i+1)+2f(|i)_f(|i—1)
The growth of the hierarchical bunching obeys a power
law and the exponent depends on the powesf the long- —D(lj =4l 6l =4l _1+1_5). (6)
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where U(l) is a potential function satisfyng—gU/dl 0 100200 300 400

=f(l). Equation(7) takes the same form as a model of spin-

odal decomposition in which the order parameter is con- FIG. 6. (a) Profile of[(x) at t=300. (b) Enlargement ofa) in
served[11]. In the usual model of the spinodal decomposi-the bottom region &1(x)<0.3.

tion, a bistable potential such &K1)= — (1/2)1%+ (1/4)I* is

as_sumed. The model equation is called the time dependeﬁvﬁen, competition among the pulses is observed. Small
Ginzburg-Landau equation for the conserved order paramyises decay and larger pulses grow further. The positions of
eter. In our model of bunchind)(l) is not a bistable func- ey jarge pulses are almost stationary. The pulse number
tion, for example, it |52a monotogucally decreasing f“gcnondecreases in time, and the average height of the survived
such asU(l)=—(1/2)I "+ (a/2)l "= for f=f5(l)=I+a/l>.  ,ises increases. The large pulse corresponds to the large
Time evolution is therefore rather different from the usualinteryal between the bunched clusters in the discrete model
Ginzburg-Landau e_quatlon fo_r the conserv_ed order paramy) or (5). The time evolution shown in Fig(& corresponds
eter. We study the time evolution of the continuum md@| (4 the hierarchical bunching of the discrete model. Figure
for f=f5()=1+a/l” for the sake of simplicity. Numerical 5 gisplays the time evolution of the average height of the
simulation was performed with the pseudospectral methodryived pulses. The numerical simulation was performed
with 1024_1 modes vv_ith time stgp 0.0001..The system kize \ith a larger system of = 1600, and the ensemble average
=400. Figure %) displays a time evolution of(x,t) ata  \ya5 taken for 20 different initial conditions. The average
=0.01 andD=1. The initial condition is almost uniform peight increases in proportion tolt is the same result as the
I(x)=0.7. The uniform state is linearly unstable, and fluc-gjscrete model as shown in Fig(b8. Figure Ga) displays a
tuations with wave numberk~1/\2 grow fast, since the profile of I(x) at the final time of Fig. 5. Each pulse has
linear growth rate for larger wave number becomes negativgifferent height, but the width is almost the same. Figuis 6

by the term—D g%l (x)/9x" in contrast to the discrete model js an enlargement of(x) in the bottom region &I(x)

(1). Many small pulses appear from the wavy fluctuations.< 3. It is a feature thatt(x) takes smaller values around

larger pulses than smaller pulses in the bottom region. These

@) <> (b) features of pulses are closely related to a family of stationary
350-] 6 pulse solutions of Eq(7).
R S S A stationary solution of Eq.(7) satisfies generally
2504 54— S d?{f[I(x)]+Dd?l(x)/dx?}/dx*=0. The integration of this
200- 552 q . equation yieldsf[I(x)]+ Dd?l/dx?=c+dx, wherec andd
150+ . are integral constants. However, the stationary solutions for
100E2 nonzerod correspond to steadily propagating solutions for

so-Ee . 1 the continuum approximation of Eq(6), i.e., dy;/dt
=const. A relevant stationary solution corresponding to
dy; /dt=0 therefore satisfies

T T T T T T T T T
0 100 200 300 400 0 50 100 15(t) 200 250 300
X

FIG. 5. (a) Time evolution ofl (x,t) for the continuum mod«7)

with —gU/dl=1+0.014% and D=1. (b) Time evolution of the d2l
average height of the survived pulses. We have calculated the quan- f[l(x)]+D—=c. (8)
tity as the average df(x,t) satisfyingl(x)>0.7. X2
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FIG. 7. (a) Pulse solution of Eq8) for c=5 andD =1. (b) Comparison of the numerically obtained pulse heigtt) (solid curve with
the theoretical valué\(c)=2c (dashed curve (c) Comparison of the numerically obtained bottom vaBig) (solid curve with the
theoretical valu(c) = (a/c)* (dashed curvewith a=0.01.

Equation(8) has a form gf Newtog’zs equation in a potential _(a/Ci)lla}/(Xj+l_Xj)a wherec; andx; are thec value and
U'=-U(l)—c-1=(1/2)I"—(a/2)l "“—c-1. The pulse so- tne position of theth pulse, respectively. If the pulse height
lution is a hom(l)/i:llnlcigglu?gn of Eq8). The pulse solution  of jth pulse is larger than that of ¢ 1)th pulsec; is larger
exists forc>(3""+3"")a ™. Figure 7a) is an example of thanc,  ,, then the mass current flows from thigt(1)th to

the stationary pulse solution by E(B) for c=5. Ascis iy pulse. Then, théth pulse grows even more. If the pulse
increased, the pulse height increases. For sufficiently large form is approximated at(x)~c+csinx, the area of the

3 :
the terma/| can be r;e_glected in E8). Then, Eq.8) has 1 ;ise is approximated 4872 (x)dx=2c. The area of the
a simple form:d<l/dx“=(c—1)/D. The pulse solution can jth pulse increases by the current from the-@)th pulse

be approximated d(x) =c+csinx/\D). Ascis increased, g (—1)th pulse. Therefore, the time evolution of the
the peak height of the pulse increases as But the pulse 5jye of thejth pulse is evaluated as

width hardly depends on. Figure 71b) compares the peak
height numerically obtained using E) with the theoreti-

4 1/3 1/3
cal estimate 2. The difference is almost invisible. We can 277%: 3a(2’) (&/cj—y) = (alc))
neglect the linear termin Eq. (8) in the tail region. Then, dt  {(al/c)*+(alc;_ )V Xj = Xj-1
Eq. (8) is simplified asDd?l/dx?=—a/I3+c. In the tail .
region of the pulsed?l/dx2=0, therefore the bottom value 3a(2")
of the pulse solution is evaluated.las(a/c)l"?. 'Figure Kc) {(a/cj)1’3+(a/cj+1)1’3}4
compares the bottom value obtained numerically using Eq.

(8) with the theoretical estimate(c)'®. Good agreement is (alcj. )P~ (alc)? 10
seen. The bottom value decreases with the peak value of the Xj 41— X ' (10
pulse, which is approximated ax2These features are al-

ready found in Fig. 6. This equation describes the competition of neighboring

The competitive interaction of the neighboring pulses ispulses. Figure 8 displays the time evolutions of three pulse
similar to the Ostwald ripening in the time evolution of the heights. Figure &) is an initial profile of(x) including
spinodal decomposition in two or three dimensions. The difthree pulses with peak height 5.23, 6.90, and 5.4X,at
fusion process transports mass from small droplets to large-27.3x,=54.3, andx;=98 in a system ol.=100. The
droplets in the Ostwald ripeninfL2]. The larger droplets three solid curves display the time evolutions by Ef}, and
grow and the smaller droplets become even smaller and dishe dashed curves display the time evolution by Ed).
appear. In our model, the larger pulses have smaller bottoffThe peak amplitude is evaluated at; Zor the time evolu-
values than the smaller pulses. Mass flow in EA).is ex-  tion of Eq. (10).] Only the pulse peak of the largest pulse
pressed as increases. The time evolution by E4.0) is a good approxi-

3a) dl 3a Jl 10 () AW (b)
~(1——>&~—|—4&, (9) 7 12

64

where only the long intervals are considered, dnend
3?l19x? are assumed to be sufficiently small. Equati@nis
rewritten as a form of mass conservation using the current as

44

2

1

al aJ
0 T T T T 0 T T T T

PV 0 20 40 60 80 100 0 20 40 60 80 100
at ox . .

The slopedl/dx in the long interval between thgh pulse FIG. 8. Comparison of time evolutions of peak heights of three
and the (+1)th pulse is evaluated ag(a/ci.q) 3 pulses by Eq(7) (solid curve$ with by Eq. (10) (dashed curves
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mation to the competitive dynamics. In the time evolution ofmodels of traffic congestion and the step bunching in the
Eg. (10), the peak amplitude at=x,~5.23 decreased to crystal growth, nonvariational effects need to be considered.
zero neat~150. One of the three pulses decays to zero and he nonvariational effects make the problems more compli-
the description by Eq(10) for the three pulses becomes cated.
meaningless. We have investigated the time evolution of the average
The linear growth law of the average pulse height is alsglistance between bunched clusters and found that the aver-
explained using this equation. If the time evolution of pulseage distance increases with a power law for the long-rage
number is expressed agt), the intervalx;,;—X; is evalu- forces. We have checked that the variance of the dlstan'ce
ated asL/n(t). The c value is evaluated as(t)xL/n(t) between the bunched clusters also obeys a power law with
from the conservation law of the total arear®t) xn(t) of ~ the same exponent. Itis important as a next problem to study
pulses. Then, the time evolution ofis evaluated asic/dt the time evolution of the distribution of the distances be-
~[alc(t) ] *Px[alc(t) 1¥¥n(t) “1~[1/c(t)] Yc(t)~const.  tween the bur}ched clusters and the distribqtion of the ]‘inal
Thereforec(t) ~t, and it means that the average pulse heighoalescence time to understand the dynamics of the hierar-
grows in proportional td. This growth law is shown in Fig. chical bunching more in detail.

6(b) by direct numerical simulation. The continuum model takes a similar form to a model of
the spinodal decomposition. The competitive dynamics be-
V. SUMMARY tween the pulses is similar to the Ostwald ripening for the

spinodal decomposition, but it is rather different from the
We have proposed a discrete and a continuum model fdsehaviors of the Ginzburg-Landau equation for the con-
hierarchical bunching. Long-range attractive and repulsiveserved order parameter, which have been intensively studied.
forces induce the bunching instability. The short-range repulThe competitive dynamics is an elemental process to under-
sive force determines the small spacing inside the bunchestand the time evolution of the distribution of the distances
clusters. Our model is a variational one, since it has a poterbetween the bunched clusters using an equation such as the
tial function, therefore the bunching process is simpler. In theSmoluchowski equation.
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