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Simple dynamical models for hierarchical bunching
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Simple one-dimensional models for hierarchical bunching are proposed. A uniform state with equal spacing
is linearly unstable and bunching clusters are created. The bunching clusters are further merged into even larger
clusters. The coarsening process towards the larger clusters obeys a power law for the long-range forces. The
exponent of the power law depends on the long-range forces. A continuum version of the lattice model with
linear repulsive force is studied more in detail. The model has a form of a kind of spinodal decomposition. The
coarsening dynamics is similar to a one-dimensional version of the Ostwald ripening.
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I. INTRODUCTION

Bunching phenomena are observed in various rese
fields. Microwave oscillation is induced by the bunching
the electron density and the electric field in the Gunn eff
for GaAs @1#. Traffic congestion is a bunching phenomen
of car flow @2,3#. Step bunching was observed on the vicin
surfaces of Si~111! @4,5#. Step bunching which exhibits th
power-law growth was found in several experiments@6#. The
hierarchical step bunching on the vicinal surfaces was s
ied theoretically based on several model equations@7,8#.

The bunching phenomena are explicitly shown by n
merical simulation of dynamical equations for the positio
of bunching objects. Bandoet al. proposed an equation o
motion for the position of each vehicle for the problem
traffic congestion@9#. For the problem of the step bunchin
explicit dynamical equations of motion for the position
each step were derived based on the diffusion equation
the boundary conditions for adatoms by several authors@10#,
however, they have rather complicated forms to underst
the bunching phenomena qualitatively. We propose an
stract but much simpler model equation to understand
essence of bunching phenomena, and study the time ev
tion of hierarchical bunching with numerical simulations a
theoretical analyses.

II. SIMPLE DYNAMICAL MODELS FOR HIERARCHICAL
BUNCHING

We consider a one-dimensional system ofN elements.
The model equation is written as

dyi

dt
52 f ~yi 112yi !1 f ~yi2yi 21!, ~1!

where yi is the position of thei th element, satisfyingy1
,y2,•••,yN , and f ( l ) is the force between the neare
neighbors, which depends only on the distancel between
them. If the differential term on the left-hand side is replac
with the second differential termd2yi /dt2, the equation be-
comes a model for lattice vibration. Our model is a latti
model and represents a dissipative and variational dynam
There exists a potential function( iU(yi 112yi), where
1063-651X/2003/68~5!/056103~6!/$20.00 68 0561
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f ( l )52]U/] l for the dynamics and the potential decreas
in time. We can assume various types of interactions betw
the neighboring elements. Similar to the interatomic for
we assume a short-range repulsive force expressed b
power law such asf ( l )5a/ l a (a.0) whenl is sufficiently
small. We use in this paper a repulsive force with expon
a53. The repulsive interaction with exponenta53 origi-
nates from the elastic energy in the problem of the step
namics on vicinal surfaces. The short-range repulsive for
prevent the spacing between the nearest neighbors from
ing zero. We assume further several types of long-range
teractions. For interatomic forces, the interaction becom
attractive in the long range in most cases. We can assum
model in which the long-range attractive force is expres
as f 5 f 1( l )52b/ l 2 (b.0). The attractive force expresses
force like the Coulomb force between ions with oppos
charges. We will study three other repulsive forces. The s
plest one is a linear forcef 5 f 2( l )5bl. We will study this
model most in detail, since the model equation is the s
plest and the hierarchical bunching appears most clea
Two other simple repulsive forces aref 3( l )5b log l and
f 4( l )5b tanhl. Since Eq.~1! is invariant for the transform:
f ( l )→ f ( l )1c0, wherec0 is a constant, the model with th
fourth repulsive forcef 4( l ) is equivalent to a model with the
force f 4( l )2b522b exp(2l)/@exp(l)1exp(2l)#. The force
f 4( l )2b expresses an attractive force which decays ex
nentially for large l. Such exponentially damping force i
often assumed as an interatomic force. The exponenti
damping force and the Coulomb-type forces may be pl
sible forces in actual physical systems. The model with
linear force may be obtained through some linearization
realistic systems. The hierarchical bunching by the logar
mic force exhibits the power-law growth with the same e
ponent as the experiment for the step bunching as sh
below.

A stationary solution to Eq.~1! is a uniform state with
constant spacingyi 112yi5 l 0 for every i. The linearized
equation for the perturbationdyi from the stationary solution
is expressed as

ddyi

dt
5 f 8~ l 0!~2dyi 1112dyi2dyi 21!. ~2!
©2003 The American Physical Society03-1
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The linear growth ratelk for the Fourier amplitudedyk

5( j 51
N dyie

2 ik j with wave numberk is calculated aslk

5(222 cosk)f8(l0). If f 8( l 0) is positive, the linear growth
rates are all positive for any wave numbers, and the u
formly spacing state is unstable. Especially the linear gro
rate is maximum atk5p, which corresponds to the alterna
ing modedyi;(21)i . Figure 1 displays the functionf 8( l 0)
for the four repulsive forcesf 1( l )50.01/l 320.07/l 2, f 2( l )
50.01/l 31 l , f 3( l )50.01/l 31 log l, and f 4( l )50.01/l 3

1tanhl. The uniform states with sufficiently smalll 0 are
stable for all models, owing to the short-range repuls
force. For f 5 f 1( l ), f 2( l ) and f 5 f 3( l ), the uniform states
are always unstable for largel 0 satisfying l 0.0.214 for f
5 f 1( l ), l 0.0.416 for f 5 f 2( l ) and l 0.0.311 for f 5 f 3( l ),
because of the long-range repulsive force. Forf 5 f 4( l )
5tanhl1a/l3, f 8( l 0) takes positive values in an intermedia
range ofl 0, but it becomes sufficiently small but negative f
large l 0. It is because the derivative of tanhl decays to zero
exponentially, but that ofa/ l 3 decays in a power law. The
instability occurs only in an intermediate range ofl 0. This
type of instability occurs in model equations studied in Re
@9# and @10#.

We have performed numerical simulations to study
time evolution of the unstable states using the Runge-K
method with time step 0.000 05. The initial spacing isl 0
50.7. Figure 1 is a time evolution of Eq.~1!. The periodic
boundary conditionsyN115y11L and y05yN2L are used
for numerical simulations. The total number of elements
N5100 and the system sizeL5Nl0 is equal to 70. The
initial position is yi50.7i 1r , wherer is a random numbe
between 0 and 0.0001. Figure 2 displays time evolutions
$yi% for four kinds of forces. Since the uniform state is u
stable, the bunching occurs for all four kinds of forces.

Since the linear growth rate is maximum for the altern
ing mode, pairing of neighboring elements tend to occur fi
It is the minimum bunching cluster. The uniform configur
tion constructed by the pair clusters is also unstable and
clustering proceeds further. Many merging processes of
bunched clusters are seen in Fig. 2. Qualitatively similar t
time evolutions are observed for different initial condition
although the detailed bunching processes are different
different initial conditions. Figure 2~a! is a time evolution for
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FIG. 1. Growth parameterf 8( l 0) for four kinds of functionsf
5 f 1( l ) 5 20.07/l 21a/ l 3, f 5 f 2( l )5 l 1a/ l 3, f 3( l ) 5 log l1a/l3,
and f 4( l )5tanhl1a/l3 at a50.01.
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f 5 f 1( l )50.01/l 320.3/l 2, and Fig. 2~b! is a time evolution
for f 5 f 2( l )50.01/l 31 l . The merging of bunched cluster
occurs hierarchically and only one large cluster survives a
t;51. We have performed similar simulations starting fro
200 different initial conditions where the random numbers
yi50.7i 1r are different, and calculated the final coale
cence time, when only one large cluster is obtained. T
average value of the final coalescence time was 60.5 and
variance was 12. The final coalescence time and the t
evolution of the clustering depends on the small difference
the initial positions, since the initial state is linearly unstab
but only one large cluster is obtained in similar times. F
f 5 f 3( l )50.01/l 31 log l, similar hierarchical bunchings oc
cur, but the time evolution is slower than the case off
5 f 2( l ). We have performed a longer simulation for the sa
initial condition and found that the single large cluster w
obtained att;1270. It takes much longer time to get th
single cluster for f 5 f 3( l ) than f 5 f 2( l ). For f 5 f 4( l )
50.01/l 31tanhl, the time evolution of cluster bunching be
comes very slow, bunched clusters are located with ne
equal spacing att5100. The hierarchical bunching is con
sidered to be due to long-range repulsive force.

We have calculated the time evolution of the avera
value ^ l b(t)& of the distances between the bunched clust
in larger-size simulations. The spacingsl 5xi 112xi between
neighboring elements inside the bunched clusters are s
ciently smaller than the spacingsl 5xi 112xi , where thei th
and i 11th elements belong to different clusters. We ha
judged a spacingl between neighboring elements as the d
tance between the bunched clusters, when the spacin
larger than a critical value such as the initial spacing 0
Then,^ l b& was evaluated as the average value of the spa
which is larger than the critical value. The average va
^ l b(t)& hardly depends on the critical value. In this simul
tion, the total numberN is 3000, and the ensemble avera
was taken for 20 different initial conditions, where the ra

FIG. 2. Time evolutions of$yi% for ~a! f 5 f 1( l )520.3/l 2

1a/ l 3, ~b! f 5 f 2( l )5 l 1a/ l 3, ~c! f 5 f 3( l )5 log l1a/l3, and ~d! f
5 f 4( l )5tanhl11/l 3 at a50.01.
3-2
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SIMPLE DYNAMICAL MODELS FOR HIERARCHICAL BUNCHING PHYSICAL REVIEW E68, 056103 ~2003!
dom numbers$r% in the initial conditions are different. Figur
3~a! displays a time evolution of̂ l b(t)&4 for f 5 f 1( l ). A
linear growth for relatively larget implies that ^ l b(t)&
;t1/4. Figure 3~b! displays a time evolution of̂l b(t)& for
f 5 f 2( l ). A linear growth is seen for relatively larget. The
linear growth law implies that the hierarchical bunching p
ceeds fast as seen in Fig. 2~b!. When the average spacin
increases up to the order of system sizeL, the single large
cluster is obtained. The linear growth of^ l b(t)& implies that
the time necessary for the generation of the single large c
ter is proportional toL. We have also calculated a time ev
lution of ^@D l b(t)#2&1/2 , whereD l b(t)5 l b(t)2^ l b(t)&. The
root-mean-square of the spacing between the bunched
ters increases also in proportion tot. Figure 3~c! displays a
time evolution of^ l b(t)&2 for f 5 f 3( l ). The linear growth
law implies that^ l b&;t1/2. This type of growth law with
exponent 1/2 was observed in the experiment of the s
bunching of vicinal surfaces@6#. From the linear growth of
^ l b(t)&2, the time necessary for the generation of the sin
large cluster is expected to be proportional toL2. It is con-
sistent that the final coalescence times were 51 forf 5 f 2( l )
and 1270 forf 5 f 3( l ) in the simulations shown in Fig. 2. W
have checked that the root-mean-square of the spacing
tween the bunched clusters increases also in a power
with exponent 1/2. Figure 3~d! displays a time evolution o
^ l b(t)& for f 5 f 4( l )5tanhl1a/l3. The horizontal axis is plot-
ted with a logarithmic scale. It implies that the average d
tance between the bunched clusters grows as^ l b&; log t, and
the clustering of the bunched clusters is very slow as sho
in Fig. 2~d!.

The growth of the hierarchical bunching obeys a pow
law and the exponent depends on the powera of the long-
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FIG. 3. ~a! Time evolutions of the average size^ l b(t)&4 of the
distances between the bunched clusters forf 5 f 1( l )520.3/l 2

10.01/l 3. ~b! Time evolutions of the average size^ l b(t)& of the
distances between the bunched clusters forf 5 f 2( l )5 l 10.01/l 3.
~c! Time evolution of ^ l b(t)&&2 for f 5 f 3( l )5 log l10.01/l 3. ~d!
Time evolution of^ l b(t)&& for f 5 f 4( l )5tanhl10.01/l 3. The time
axis is plotted in a logarithmic scale.
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range forcef ( l ); l a. We have not found such a power la
for f 5 f 4( l )5tanhl1a/l3, since the repulsive force saturate
exponentially. The exponent of the power-law growth
evaluated with a simple scaling method as follows. If t
hierarchical bunching evolves uniformly and bunched cl
ters of numbern(t) appear at timet, the distance between th
neighboring bunched clusters is estimated asl b(t)5L/n(t),
and the numberNb of elements in each cluster is estimat
as Nb5N/n(t). If the summation of Eq.~1! is taken with
respect to all the elementi inside of each cluster, an equatio
for the averaged positionYj5( i yi /Nb of the j th bunched
cluster is approximately obtained as

Nb

dYi

dt
52 f ~Yj 112Yj !1 f ~Yj 212Yj !. ~3!

If the long-range force is approximated asf ( l ); l a, the av-
erage distance between the neighboring clustersl b;Yj 11
2Yj obeys the equation

Nb

dlb
dt

} l b

dlb
dt

; l b
a . ~4!

Therefore, the time evolution ofl b(t) is evaluated asl b(t)
5t1/(22a). The exponent fora51 @ f 5 f 2( l )# is 1, the expo-
nent for a50 @including logarithmic lawf 5 f 3( l )] is 1/2,
and the exponent fora522 @ f 5 f 1( l )# is 1/4. These results
are consistent with the direct numerical simulations.

III. CONTINUUM EQUATION FOR HIERARCHICAL
BUNCHING

The spacing of neighboring elements inside of t
bunched cluster is very small but the interval between
neighboring bunched clusters is fairly large as shown in F
2. The spacing between the neighboring elements chan
discontinuously at the edge sites of the bunched clusters
many bunching models such as car-following models a
step bunching models, the spacing changes more con
ously. If a next-nearest interaction is introduced as

dyi

dt
52 f ~yi 112yi !1 f ~yi2yi 21!

2D~yi 1224yi 1116yi24yi 211yi 22!, ~5!

D is a coupling constant, the spacing changes more cont
ously. Figure 4 displays a time evolution of Eq.~5! with f
5f2(l)5l10.01/l 3 and D51. Hierarchical bunching occur
similarly to the case ofD50. But several elements locat
between the bunched clusters, which makes the profile
spacing more smooth. The equation of motion for the sp
ing l i5yi 112yi obeys

dli
dt

52 f ~ l i 11!12 f ~ l i !2 f ~ l i 21!

2D~ l i 1224l i 1116l i24l i 211 l i 22!. ~6!
3-3
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If we take a continuum approximationl i5 l (x), Eq. ~6!
yields

] l

]t
52

]2

]x2 S 2
]U~ l !

] l
1D

]2l

]x2D , ~7!

where U( l ) is a potential function satisfyng2]U/] l
5 f ( l ). Equation~7! takes the same form as a model of sp
odal decomposition in which the order parameter is c
served@11#. In the usual model of the spinodal decompo
tion, a bistable potential such asU( l )52(1/2)l 21(1/4)l 4 is
assumed. The model equation is called the time depen
Ginzburg-Landau equation for the conserved order par
eter. In our model of bunching,U( l ) is not a bistable func-
tion, for example, it is a monotonically decreasing functi
such asU( l )52(1/2)l 21(a/2)l 22 for f 5 f 2( l )5 l 1a/ l 3.
Time evolution is therefore rather different from the usu
Ginzburg-Landau equation for the conserved order par
eter. We study the time evolution of the continuum model~7!
for f 5 f 2( l )5 l 1a/ l 3 for the sake of simplicity. Numerica
simulation was performed with the pseudospectral met
with 1024 modes with time step 0.0001. The system sizL
5400. Figure 5~a! displays a time evolution ofl (x,t) at a
50.01 andD51. The initial condition is almost uniform
l (x)50.7. The uniform state is linearly unstable, and flu
tuations with wave numbersk;1/A2 grow fast, since the
linear growth rate for larger wave number becomes nega
by the term2D]4l (x)/]x4 in contrast to the discrete mode
~1!. Many small pulses appear from the wavy fluctuatio

FIG. 4. Time evolution of$yi% for Eq. ~5! for f 5 l 10.01/l 3 and
D51.
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FIG. 5. ~a! Time evolution ofl (x,t) for the continuum model~7!
with 2]U/] l 5 l 10.01/l 3 and D51. ~b! Time evolution of the
average height of the survived pulses. We have calculated the q
tity as the average ofl (x,t) satisfyingl (x).0.7.
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Then, competition among the pulses is observed. Sm
pulses decay and larger pulses grow further. The position
very large pulses are almost stationary. The pulse num
decreases in time, and the average height of the surv
pulses increases. The large pulse corresponds to the
interval between the bunched clusters in the discrete mo
~1! or ~5!. The time evolution shown in Fig. 5~a! corresponds
to the hierarchical bunching of the discrete model. Figu
5~b! displays the time evolution of the average height of t
survived pulses. The numerical simulation was perform
with a larger system ofL51600, and the ensemble avera
was taken for 20 different initial conditions. The avera
height increases in proportion tot. It is the same result as th
discrete model as shown in Fig. 3~b!. Figure 6~a! displays a
profile of l (x) at the final time of Fig. 5. Each pulse ha
different height, but the width is almost the same. Figure 6~b!
is an enlargement ofl (x) in the bottom region 0, l (x)
,0.3. It is a feature thatl (x) takes smaller values aroun
larger pulses than smaller pulses in the bottom region. Th
features of pulses are closely related to a family of station
pulse solutions of Eq.~7!.

A stationary solution of Eq.~7! satisfies generally
d2$ f @ l (x)#1Dd2l (x)/dx2%/dx250. The integration of this
equation yieldsf @ l (x)#1Dd2l /dx25c1dx, wherec and d
are integral constants. However, the stationary solutions
nonzerod correspond to steadily propagating solutions
the continuum approximation of Eq.~6!, i.e., dyi /dt
5const. A relevant stationary solution corresponding
dyi /dt50 therefore satisfies

f @ l ~x!#1D
d2l

dx2
5c. ~8!an-
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FIG. 6. ~a! Profile of l (x) at t5300. ~b! Enlargement of~a! in
the bottom region 0, l (x),0.3.
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Equation~8! has a form of Newton’s equation in a potenti
U852U( l )2c• l 5(1/2)l 22(a/2)l 222c• l . The pulse so-
lution is a homoclinic solution of Eq.~8!. The pulse solution
exists forc.(31/41323/4)a1/4. Figure 7~a! is an example of
the stationary pulse solution by Eq.~8! for c55. As c is
increased, the pulse height increases. For sufficiently largl,
the terma/ l 3 can be neglected in Eq.~8!. Then, Eq.~8! has
a simple form:d2l /dx25(c2 l )/D. The pulse solution can
be approximated atl (x)5c1c sin(x./AD). As c is increased,
the peak height of the pulse increases as 2c, but the pulse
width hardly depends onc. Figure 7~b! compares the pea
height numerically obtained using Eq.~8! with the theoreti-
cal estimate 2c. The difference is almost invisible. We ca
neglect the linear terml in Eq. ~8! in the tail region. Then,
Eq. ~8! is simplified asDd2l /dx252a/ l 31c. In the tail
region of the pulse,d2l /dx250, therefore the bottom valu
of the pulse solution is evaluated asl;(a/c)1/3. Figure 7~c!
compares the bottom value obtained numerically using
~8! with the theoretical estimate (a/c)1/3. Good agreement is
seen. The bottom value decreases with the peak value o
pulse, which is approximated as 2c. These features are a
ready found in Fig. 6.

The competitive interaction of the neighboring pulses
similar to the Ostwald ripening in the time evolution of th
spinodal decomposition in two or three dimensions. The
fusion process transports mass from small droplets to la
droplets in the Ostwald ripening@12#. The larger droplets
grow and the smaller droplets become even smaller and
appear. In our model, the larger pulses have smaller bot
values than the smaller pulses. Mass flow in Eq.~7! is ex-
pressed as

J5
]

]x S l 1
a

l 3
1D

]2l

]x2D ;S 12
3a

l 4 D ] l

]x
;2

3a

l 4

] l

]x
, ~9!

where only the long intervals are considered, andl and
]2l /]x2 are assumed to be sufficiently small. Equation~7! is
rewritten as a form of mass conservation using the curren

] l

]t
52

]J

]x
.

The slope] l /]x in the long interval between thej th pulse
and the (j 11)th pulse is evaluated as$(a/ci 11)1/3
05610
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2(a/ci)
1/3%/(xj 112xj ), wherecj andxj are thec value and

the position of thej th pulse, respectively. If the pulse heig
of j th pulse is larger than that of (j 11)th pulse,cj is larger
thancj 11, then the mass current flows from the (j 11)th to
j th pulse. Then, thej th pulse grows even more. If the puls
form is approximated atl (x);c1c sinx, the area of the
pulse is approximated at*2p/2

3p/2 l (x)dx52pc. The area of the
j th pulse increases by the current from the (j 11)th pulse
and (j 21)th pulse. Therefore, the time evolution of thec
value of thej th pulse is evaluated as

2p
dcj

dt
5

3a~24!

$~a/cj !
1/31~a/cj 21!1/3%4

~a/cj 21!1/32~a/cj !
1/3

xj2xj 21

1
3a~24!

$~a/cj !
1/31~a/cj 11!1/3%4

3
~a/cj 11!1/32~a/cj !

1/3

xj 112xj
. ~10!

This equation describes the competition of neighbor
pulses. Figure 8 displays the time evolutions of three pu
heights. Figure 8~a! is an initial profile of l (x) including
three pulses with peak height 5.23, 6.90, and 5.42 atx1
527.3,x2554.3, andx3598 in a system ofL5100. The
three solid curves display the time evolutions by Eq.~7!, and
the dashed curves display the time evolution by Eq.~10!.
@The peak amplitude is evaluated at 2cj for the time evolu-
tion of Eq. ~10!.# Only the pulse peak of the largest puls
increases. The time evolution by Eq.~10! is a good approxi-
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FIG. 8. Comparison of time evolutions of peak heights of thr
pulses by Eq.~7! ~solid curves! with by Eq. ~10! ~dashed curves!.
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mation to the competitive dynamics. In the time evolution
Eq. ~10!, the peak amplitude atx5x1;5.23 decreased to
zero neart;150. One of the three pulses decays to zero
the description by Eq.~10! for the three pulses become
meaningless.

The linear growth law of the average pulse height is a
explained using this equation. If the time evolution of pu
number is expressed asn(t), the intervalxj 112xj is evalu-
ated asL/n(t). The c value is evaluated asc(t)}L/n(t)
from the conservation law of the total area 2pc(t)3n(t) of
pulses. Then, the time evolution ofc is evaluated asdc/dt
;@a/c(t)#24/33@a/c(t)#1/3/n(t)21;@1/c(t)#21/c(t);const.
Thereforec(t);t, and it means that the average pulse hei
grows in proportional tot. This growth law is shown in Fig
6~b! by direct numerical simulation.

IV. SUMMARY

We have proposed a discrete and a continuum mode
hierarchical bunching. Long-range attractive and repuls
forces induce the bunching instability. The short-range rep
sive force determines the small spacing inside the bunc
clusters. Our model is a variational one, since it has a po
tial function, therefore the bunching process is simpler. In
e

,

05610
f

d

o

t

or
e
l-
ed
n-
e

models of traffic congestion and the step bunching in
crystal growth, nonvariational effects need to be conside
The nonvariational effects make the problems more com
cated.

We have investigated the time evolution of the avera
distance between bunched clusters and found that the a
age distance increases with a power law for the long-r
forces. We have checked that the variance of the dista
between the bunched clusters also obeys a power law
the same exponent. It is important as a next problem to st
the time evolution of the distribution of the distances b
tween the bunched clusters and the distribution of the fi
coalescence time to understand the dynamics of the hie
chical bunching more in detail.

The continuum model takes a similar form to a model
the spinodal decomposition. The competitive dynamics
tween the pulses is similar to the Ostwald ripening for t
spinodal decomposition, but it is rather different from t
behaviors of the Ginzburg-Landau equation for the co
served order parameter, which have been intensively stud
The competitive dynamics is an elemental process to un
stand the time evolution of the distribution of the distanc
between the bunched clusters using an equation such a
Smoluchowski equation.
ug-
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